DIYneuroscience
Categories of Increasing Human Cognitive Ability

Brain Fitness
- Brain Training (Lumosity)
- Logic Games (Chess, Go)

Learning
- Spaced-repetition learning
- Dual n-back training (memory)

Topic-specific Training
- Rationality instruction
- Math or logic problems
- Affect management (Ekman training)
- Prolonged sensory deprivation
- Operant conditioning

Physiology and Nutrition
- General physical health
- Specific types of exercise and yoga
- Changing the oxygen content of breathe intake
- Potassium and nutrients/micronutrients in general
- Paleo and other popular diets
- Nicotine, caffeine, creatine
- GHB (Gamma-Hydroxybutyric acid)
- Irradiation or administration of other toxins
- Intermittent fasting

Sleep
- Ability to relax
- Healthy amount of sleep
- Lucid dreaming

Practices
- Meditation, yoga, exercise, visualization
- Gratitude, journaling, happiness
- Music, art, foreign language

Chemical
- Caffeine
- Modafinil
- Adderall, Ritalin
- Valproate
- Steroids

Electrical Stimulation
- tDCS (transcranial direct current stimulation)
- rTMS (repetitive transcranial magnetic stimulation)
- Transcranial Pulsed Ultrasound, Ultrasonic Neuromodulation
- CES (cranial electrotherapy stimulation), Transcranial Electrotherapy, Selectrosleep therapy, Neuroelectric therapy
- Neurofeedback: EEG, etc.
Research Overview

• Mission: review, investigate, and conduct studies regarding the possibilities of increasing human cognitive ability
 – Definitions (cognition, cognitive ability), metrics, measurement, evidence, standards
 – Measures: standards (?) in existing studies, cognitive restoration techniques (stroke), cognitive pathology measures, utility evaluation, translation to everyday life

• Research Questions
 – What kinds of cognitive enhancement techniques are currently available, what is their impact, and what are their future prospects for success?
 – Which classes of techniques could be most/least successful?
 – What are the obvious roadblocks and factors that need to be resolved to move forward?
 – What are worldwide social and philosophical attitudes towards cognitive enhancement (both in cognitive enhancers and the general public)?

• Research Outcome
 – Identify and categorize evidence-based techniques for cognitive enhancement, evaluate future prospects of such efforts, and examine attitudes towards and use of such techniques in clinical and DIY communities
Research Program

- Review current types of cognitive enhancement techniques/studies
- Conduct new studies
 - Personalized genomics
 - Overall cognitive enhancement profile including attention, alertness, concentration; drug response; meditation, relaxation, sleep; pathology predisposition (Alzheimer’s disease, Parkinson’s disease)
 - Thinking Fast and Slow, Subjective Experience (in process), Quantified Creativity (in planning)
 - Consumer electrical stimulation (tDCS, TMS, neuro-feedback (EEG))
 - Cognitive enhancement attitudes survey (US, Japan cohorts; cognitive enhancers, general public cohorts); philosophy and psychology of cognitive enhancement
 - Consumer-available alternative to valproic acid targeting same mechanisms
 - mRNA transcriptome profile, meditation, flow state, group flow state
- Develop novel analysis methods (statistical, algorithmic, big data pattern analysis, data stream synthesis)
Cognitive Performance Genomics

Connecting personal genomics to cognition enhancement

Eras of Application in Personal Genomics

• I. Ancestry, Pre-natal Screening, Forensics
• II. Medical Genomics, Pharmaceutical Response
• III. Social Intelligence, Athletic Performance
• IV. Cognitive Performance and Emotional Mastery
• V. Predictive Profiling: Wellness, Environment, Product Response

Cognitive Performance Genomics

Thinking Fast and Slow: cognitive bias in thinking (loss aversion and optimism bias)

Creativity and Innovation: process and capacity

General Cognitive Abilities: memory, attention, speed, flexibility, problem-solving
Genes Associated with Cognitive Performance

• Neurotransmitter activation and Neuroplasticity
 – **COMT** (catechol-O-methyltransferase) protein encoding to inactivate neurotransmitters and hormones
 – **BDNF** (brain-derived neurotrophic factor) stimulates nerve growth factor; neuroplasticity
 – **NRG** (neuregulin) related to neuronal development

• Dopamine and serotonin receptors
 – **DRD2** (dopamine receptor 2) modulates locomotion, reward, reinforcement, risk-taking, memory, and learning
 – **DRD2/ANKK1, DRD4** 7+ repeat associated with risk-taking
 – **SLC6A3** (solute carrier family 6) encodes a dopamine transporter; terminates the action of dopamine
 – **5-HTT, 5-HTTLPR** Dopamine and serotonin transport
Linking Genes to Cognition

<table>
<thead>
<tr>
<th>Genes/EQs</th>
<th>Social Intelligence</th>
<th>Memory</th>
<th>Fast/Slow Thinking</th>
<th>Creativity</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-HTT, 5-HTTLPR Dopamine & Serotonin Transportation</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>BDNF Neuroplasticity</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>COMT Val(158)Met, Rewards, Altruism, Gambling</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>DRD2 Open to experience</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>DRD2/ANKK1 Risk-taking</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NRG Neuregulin, Neuronal development</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>OXTR Oxytocin Optimism, Empathy</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDYN Addiction</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>SLC6A3, T102C Dopamine transport, impulse control</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
Thinking Fast and Slow

- Daniel Kahneman, Nobel Laureate in Economics, 2002
- Decision-making function: two thinking systems are used to make choices
 - Fast, intuitive thinking
 - Slow, rational thinking
- Helps to explain bias and prejudice
 - Why there more chance we'll believe something if it's in a bold type face
 - Why judges are more likely to deny parole before lunch
 - Why we assume a good-looking person will be more competent
A. Loss Aversion

• Loss Aversion: loss avoidance vastly preferred to gains
• Neural Processes: reward processing, reward anticipation, action-taking, risk-taking and risk-avoidance, impulse control, addiction, and propensity for gambling
• Genes: 5-HTTLPR, COMT Val(158)Met, T102C, DRD2/ANKK1, PDYN
• Instruments (open-source PEBL software)
 – Loss Aversion Task: prospect theory
 – Iowa Gambling Task: real-life decision-making
Study: Thinking Fast and Slow

B. Optimism Bias

• Optimism Bias: overconfidence, being inaccurately optimistic about outcomes
• Neural Processes: reward processing, positive mindset, attitude towards new experience
• Genes: 5-HTTLPR, COMT Val(158)Met, T102C, DRD2/ANKK1, OXTR
• Instruments
 – Schowmaker’s Confident Decision Making test
 – Blavatskyy’s Experimental Test of Overconfidence
 – Critch’s Credence Game
Study: Thinking Fast and Slow

C. Thinking Systems

- Thinking systems: Fast (immediate gut response) and slow (relaxed and deliberative)
- Neural Processes: adrenergic regulation of the hormone epinephrine and the neurotransmitter norepinephrine related to the “fight or flight” response, sympathetic nervous system arousal
- Genes: ADRB1, ADRB2
- Instruments
 - Fight-or-Flight Response Test
 - Fight or Flight Questionnaire
Important Role of Creativity

• Growing field of multi-disciplinary study
 – Biology: natural selection, genomics, neurology
 – Psychology: how the imagination works, cognitive processes employed in creativity
 – Philosophy: Metaphysics (existence definitions, role of consciousness and intentionality), Ethics (Is creativity valuable for its own sake apart from what it produces? Is creativity a virtue?), Aesthetics
5 Steps in the Creative Process

1. **Preparation**: Becoming immersed in the area
2. **Incubation**: Allowing the ideas to turn around unconsciously
3. **Insight**: the “Aha!” moment when things start to make sense
4. **Evaluation**: Deciding whether to pursue the insight
5. **Elaboration**: Translating the insight into its final form

Source: Csikszentmihalyi, Creativity: Flow and the Psychology of Discovery and Invention, 1996
Study: Quantified Creativity

• Creativity: The ability to make or bring something new into existence (*Webster*)
• Neural Processes: Neuroplasticity, dopamine and serotonin transportation, neuregulin (neuronal development), neurotrophic factor (neuron and synapse growth), risk-taking, openness to experience
• Genes: BDNF, 5-HTT, COMT, NRG, DRD2/ANKK1, DRD2
• Instruments
 – Kirton Adaptation Innovation Inventory
 – Buffalo Creative Process Inventory
 – Creativity journal
 – Consumer EEG tracking of gamma spikes
Study: Memory Updating

Objective: To determine if genetic variants related to dopamine processing in the brain impact the processing of memories according to their relation with ongoing reality.

Description:

Our brains are able to adapt to the unexpected using an inbuilt network that makes predictions about the world and monitors how those predictions turn out. An area at the front of the brain, called the orbitofrontal cortex, plays a central role and studies have shown that patients with damage to this area confuse memories with reality and continue to anticipate events that are no longer likely to happen.

This study seeks to determine if genetic variants in the dopamine processing pathway impact this process in normal, healthy volunteers.

Goal: 100 member cohort
- Genotype: COMT, DRD2, SLC6A3 (~5 SNPs) (neurotransmitter modulation)
- Phenotype: memory test (20-25 minutes)
- Background questionnaire

Source: http://genomera.com/studies/aging-telomere-length-and-telomerase-activation-therapy
Augmenting the Brain

24/7 Consumer EEG, Eye-tracking, Emotion-Mapping, Augmented Reality Glasses

Building Exosenses
Extending our senses in new ways to perceive data as sensation

Magnetic Sense: Finger and Arm Magnets

Eric Boyd – Heart Spark
http://sensebridge.net/projects/heart-spark/
The North Paw- A Haptic Compass Anklet
http://www.youtube.com/watch?v=D4shfNufqSg

Nancy Dougherty – Serendipitous Joy
Smile-triggered EMG muscle sensor with an LED headband display
Big Health Data Streams

‘Omics’ Data Streams

- Genome: SNP mutations, Structural variation, Epigenetics
- Microbiome
- Transcriptome
- Metabolome
- Proteome
- Diseasome
- Environmentome

Traditional Data Streams

- Personal and Family Health History
- Prescription History
- Lab Tests: History and Current
- Demographic Data
- Standardized Instrument Response

Quantified Self Data Streams

- Self-reported data: health, exercise, food, mood journals, etc.
- Mobile App Data
- Quantified Self Device Data
- Biosensor Data Objective Metrics

Legend: Consumer-available

DIYgenomics Study Methodology

- Goal: biophysical performance optimization and pre-clinical disease prevention
- Generalized hypothesis: Genetic polymorphisms may result in out-of-bounds phenotypic marker levels which may be improved through intervention